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Abstract
We introduce a class of one-dimensional lattice models in which a quantity,
which may be thought of as an energy, is either transported from one site to a
neighbouring one, or locally dissipated. Transport is controlled by a continuous
bias parameter, q, which allows us to study symmetric as well as asymmetric
cases. We derive sufficient conditions for the factorization of the N-body
stationary distribution and give an explicit solution for the latter, before briefly
discussing physically relevant situations.

PACS numbers: 05.40.−a, 02.50.Fy, 47.27.Eq

Introduction

Systems driven in a non-equilibrium steady state by an external force that generates an internal
flux are very frequent in nature. Among these systems, two broad classes may be distinguished
according to their conservation properties. The first class corresponds to systems in which
the flux of a conserved quantity (e.g., particles or mass) takes place. Such systems have
raised considerable interest recently, and different paradigmatic models for which the full
(N-body) stationary probability distribution can be worked out exactly have emerged from
these studies: the asymmetric simple exclusion process (ASEP) [1–5], the zero range process
(ZRP) [1, 6, 7], the asymmetric random average process (ARAP) [8–11], as well as more
general mass transport models [12, 13].

On the other side, a second class corresponds to situations where the quantity moving
through the system is locally non-conserved in the bulk. This may happen, for instance, when
the system can exchange particles with a reservoir, or when one considers an energy flux in
a system where the ‘microscopic’ dynamics—at the chosen level of description—is already
dissipative, as in turbulent flows or in shaken granular materials, for instance. Within this
class of systems, attention has been mainly devoted to ASEP or ZRP models where particles
can be added or removed within the bulk, at rates that may differ from the boundary ones
[7, 14–18]. Yet there seems to be very few known solvable models, for which the probability
of any microscopic configuration can be computed exactly, where a continuous quantity is
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Figure 1. Schematic view of the model, with the three different mechanisms: energy injection at
boundary sites with rates JL(µ1) and JR(µN), transport from site i to site i + 1 and i − 1 with rates
qφi(µi |ρi) and (1 − q)φi(µi |ρi) respectively, and dissipation at site j with rate �j (µj |ρj ). On
sites i = 1 and i = N , energy may also be transferred to the reservoirs; see text.

injected at the boundaries and (partially) dissipated in the bulk, a situation of broad physical
interest [19]1.

In this paper, we consider a generalization of the one-dimensional cascade model
introduced in [20], where a local quantity, injected at the boundaries, is either transported
or dissipated in the bulk. A bias parameter q allows us to consider partially asymmetric
transport. We give an explicit solution for the full N-body stationary distribution in cases where
it factorizes, and briefly discuss a physical application to a schematic turbulence modelling.

Definition of the model

We consider a one-dimensional lattice with sites labelled from i = 1 to N, and introduce a
local quantity ρi which may be thought of as an energy. The dynamics is defined through the
following local stochastic rules. An amount of energy between µ and µ + dµ can be injected
from a reservoir on the left boundary i = 1 with a rate (probability per unit time) JL(µ) dµ, or
injected from another reservoir on the right boundary i = N with a rate JR(µ) dµ. Transport
proceeds by removing an amount of energy µ on site i with a rate φi(µ|ρi) dµ depending on
the energy ρi present on site i. The energy µ is then added either to site i + 1 (to the right
reservoir if i = N ) with probability q, or to site i − 1 (to the left reservoir if i = 1) with the
complementary probability p = 1 − q. Finally, dissipation is implemented by withdrawing
an energy µ from site i with a rate �i(µ|ρi) dµ, without adding it to another site. A simple
sketch of the model is shown in figure 1.

The statistical state of the model is described by the N-body probability distribution
P(ρ1, . . . , ρN , t). Given the above stochastic rules, the evolution of this distribution is
governed by the following master equation:

∂P

∂t
= q

N−1∑
j=1

∫ ρj+1

0
dµφj (µ|ρj + µ)P (. . . , ρj + µ, ρj+1 − µ, . . . , t)

+ p

N∑
j=2

∫ ρj−1

0
dµφj (µ|ρj + µ)P (. . . , ρj−1 − µ, ρj + µ, . . . , t)

1 Note that a ‘reverse’ situation, where a quantity is constantly added in the bulk, has been studied in the context of
force fluctuations in beads packs, the vertical axis playing the role of time [10].
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+
N∑

j=1

∫ ∞

0
dµ�j(µ|ρj + µ)P (. . . , ρj + µ, . . . , t)

+ p

∫ ∞

0
dµφ1(µ|ρ1 + µ)P (ρ1 + µ, . . . , t)

+ q

∫ ∞

0
dµφN(µ|ρN + µ)P (. . . , ρN + µ, t)

+
∫ ρ1

0
dµJL(µ)P (ρ1 − µ, . . . , t) +

∫ ρN

0
dµJR(µ)P (. . . , ρN − µ, t)

−
N∑

j=1

∫ ρj

0
dµ[φj (µ|ρj ) + �j(µ|ρj )]P({ρi}, t)

−
∫ ∞

0
dµ[JL(µ) + JR(µ)]P({ρi}, t),

(1)

where the dots stand for all the variables ρi which are not modified by µ.

Factorized steady state

We wish to study the stationary distribution Pst(ρ1, . . . , ρN) in cases where it is factorized,
and thus make the following ansatz for Pst(ρ1, . . . , ρN):

Pst(ρ1, . . . , ρN) = 1

Z

N∏
i=1

fi(ρi), (2)

where Z is a normalization factor. Note that due to the presence of dissipation in the bulk, one
expects that the one-site distribution fi(ρi) is different from one site to the other, even when
the stochastic rules are site-independent, i.e., φi(µ|ρi) = φ(µ|ρi) and �i(µ|ρi) = �(µ|ρi).
Introducing the above ansatz for Pst(ρ1, . . . , ρN) in the stationary master equation, it is easy
to check that a specific form for the transport and dissipation functions φi(µ|ρi) and �i(µ|ρi)

allows for a decoupling of the different degrees of freedom, in the sense that the stationary
master equation can then be written as a sum of terms involving at most one variable ρi . This
specific form reads

φi(µ|ρi) = φ̃i(µ)
fi(ρi − µ)

fi(ρi)
, �i(µ|ρi) = �̃i(µ)

fi(ρi − µ)

fi(ρi)
. (3)

Under these assumptions, the stationary master equation can be rewritten as
N∑

j=1

∫ ρj

0
dµ[φ̃j (µ) + �̃j (µ)]

fj (ρj − µ)

fj (ρj )
+

∫ ∞

0
dµ[JL(µ) + JR(µ)]

= q

N∑
j=2

∫ ρj

0
dµ φ̃j−1(µ)

fj (ρj − µ)

fj (ρj )
+ p

N−1∑
j=1

∫ ρj

0
dµ φ̃j+1(µ)

fj (ρj − µ)

fj (ρj )

+
∫ ∞

0
dµ


qφ̃N(µ) + pφ̃1(µ) +

N∑
j=1

�̃j (µ)




+
∫ ρ1

0
dµJL(µ)

f1(ρ1 − µ)

f1(ρ1)
+

∫ ρN

0
dµJR(µ)

fN(ρN − µ)

fN(ρN)
(4)
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and the decoupling property mentioned above appears explicitly. As this equation is a sum of
functions of independent variables, each of these functions—i.e., the sum of terms depending
on a given ρi—has to be equal to a constant. To determine the value of these constants, one
can first send all the ρ ′

i s to zero, in which case all the integrals over the interval [0, ρi] are
expected to vanish2. As a result, the terms that do not depend on ρi sum up to zero:∫ ∞

0
dµ


qφ̃N(µ) + pφ̃1(µ) +

N∑
j=1

�̃j (µ) − JL(µ) − JR(µ)


 = 0. (5)

In a similar way, sending to zero all the ρi but one leads to the conclusion that all terms
depending on a given ρj also sum up to zero. For 2 � j � N − 1, one has∫ ρj

0
dµ[qφ̃j−1(µ) + pφ̃j+1(µ) − φ̃j (µ) − �̃j (µ)]

fj (ρj − µ)

fj (ρj )
= 0. (6)

At the boundary sites j = 1 and j = N , one finds∫ ρ1

0
dµ[JL(µ) + pφ̃2(µ) − φ̃1(µ) − �̃1(µ)]

f1(ρ1 − µ)

f1(ρ1)
= 0 (7)

∫ ρ1

0
dµ[JR(µ) + qφ̃N−1(µ) − φ̃N (µ) − �̃N(µ)]

fN(ρN − µ)

fN(ρN)
= 0. (8)

A sufficient condition to solve this set of equations is to assume that each of the integrands is
equal to zero, leading to

qφ̃N(µ) + pφ̃1(µ) +
N∑

j=1

�̃j (µ) − JL(µ) − JR(µ) = 0 (9)

qφ̃j−1(µ) + pφ̃j+1(µ) − φ̃j (µ) − �̃j (µ) = 0 (2 � j � N − 1) (10)

JL(µ) + pφ̃2(µ) − φ̃1(µ) − �̃1(µ) = 0 (11)

JR(µ) + qφ̃N−1(µ) − φ̃N (µ) − �̃N(µ) = 0. (12)

Thus, as a consequence of the specific form (3) chosen for φj (µ|ρ) and �j(µ|ρ), it turns
out that the function fj (ρ) has disappeared from the equations. Although this result may be
surprising at first sight, it should be noted that the mass transport model introduced in [12]
has the same property. As a result, any set of functions fj (ρ) may be a solution of the model,
provided that the dynamical rules are suitably chosen. Equations (9)–(12) should thus be
considered as compatibility conditions allowing for the existence of a factorized distribution.
Let us also note that these four equations are not independent: it can be checked easily that, for
instance, equation (9) can be obtained from the sum of equations (10), summed over j , (11)
and (12). To solve these equations, we first define some extra functions φ̃0(µ) and φ̃N+1(µ)

on the boundaries as, assuming p, q �= 0,

JL(µ) ≡ qφ̃0(µ), JR(µ) ≡ pφ̃N+1(µ), (13)

which allows one to rewrite equations (11) and (12) in the same form as equation (10) with
j = 1 and j = N , respectively. Introducing an auxiliary function χj (µ) through

χj (µ) ≡ φ̃j+1(µ) − φ̃j (µ), 0 � j � N (14)

2 Considering an integral of the form I (ρ) = ∫ ρ

0 dµ ψ(µ)f (ρ − µ)/f (ρ) with ψ(µ) ∼ µα−1 and f (µ) ∼ µβ−1

for µ → 0 (α, β > 0 to ensure the convergence of the integral), it can be shown easily that I (ρ) ∼ ρα → 0 when
ρ → 0.
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equations (10), (11) and (12) can be rewritten in a concise form as

pχj (µ) − qχj−1(µ) = �̃j (µ), 1 � j � N. (15)

Setting r ≡ p/q, this last equation is easily integrated out as

χj (µ) = K̃(µ)rN−j − 1

q

N−1∑
i=j

ri−j �̃i+1, 0 � j � N, (16)

where K̃(µ) is (up to now) an arbitrary function of µ, and with the convention that the sum
is zero if j = N . Using equation (14) and assuming q �= 1/2, one can now solve for φ̃j (µ),
yielding for 0 � j � N + 1 (the sum is zero if j � N )

φ̃j (µ) = K(µ)rN−j +
1

2q − 1

N∑
i=j+1

(1 − ri−j )�̃i + C(µ) (17)

with a new (arbitrary) function C(µ), and where K(µ) is related to K̃(µ) through
K(µ) = pK̃(µ)/(2q − 1). Using the boundary conditions (13), one can determine the
unknown functions K(µ) and C(µ):

K(µ) = Br

(
JR(µ)

1 − q
− JL(µ)

q
+

1

2q − 1

N∑
i=1

(1 − ri)�̃i(µ)

)
(18)

C(µ) = B

q

(
JL(µ) − JR(µ)rN − q

2q − 1

N∑
i=1

(1 − ri)�̃i(µ)

)
(19)

with B ≡ (1 − rN+1)−1. Note that the case q = 1, which was temporarily excluded from the
calculation, is recovered by taking the limit q → 1. A similar calculation can be performed
in the case q = 1/2 to give

φ̃j (µ) = 2
j∑

i=1

(j − i)�̃i(µ) + jA(µ) + 2JL(µ) 1 � j � N (20)

with

A(µ) = 2

N + 1

[
JR(µ) − JL(µ) −

N∑
i=1

(N + 1 − i)�̃i(µ)

]
. (21)

As mentioned in the above derivation, the form (3) of the rates φi(µ|ρi) and �i(µ|ρi), as well
as the conditions given in equations (17) and (20) are a priori only sufficient conditions for
the factorization of the distribution Pst(ρ1, . . . , ρN). Yet, let us recall that for the general class
of mass transport models on a ring geometry studied in [12, 13], where dissipation is absent,
the form (3) of the transport rate has been shown to be a necessary and sufficient condition for
factorization, in the case of continuous time dynamics. So it may be plausible that this form is
also necessary in the present model. Let us also note that an explicit test of the form (3) of the
rate functions has been proposed in [13]. This test should also apply to the present situation
so that, given two functions φi(µ|ρi) and �i(µ|ρi), one should be able to check whether they
are of the form (3), and to determine the corresponding functions φ̃i(µ), �̃i(µ) and fi(ρ).
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Site-independent rates

A situation of physical interest is when the dynamical rules are site-independent whereas,
due to the injection and dissipation mechanisms, the one-site steady-state distribution may
depend on the site considered. An example of such a situation has been given in [20], in
the fully biased case q = 1. In what follows, we wish to study the possibility to find a
factorized steady-state distribution with symmetric transport, that is for q = 1/2, and with
site-independent rates. The transition rates given in equation (3) are independent of the site if
the functions φ̃j (µ), �̃j (µ) and fj (ρ) satisfy

φ̃j (µ) = h1(µ) e−λj µ, �̃j (µ) = h2(µ) e−λj µ, fj (ρ) = g(ρ) e−λj ρ. (22)

Besides, from equation (15), the rates have to satisfy
1
2 φ̃j−1(µ) + 1

2 φ̃j+1(µ) − φ̃j (µ) = �̃j (µ), 1 � j � N. (23)

Let us introduce a coordinate x = j/L, so that 0 � x � 1. For the sake of simplicity, we
shall consider the limit of large system size, and assume that the transition rates vary slowly
as a function of the site index, in the sense that there exist continuous functions φ̂(µ, x) and
�̂(µ, x) of the variable x, such that

φ̃j (µ) = φ̂(µ, jL), �̃j (µ) = 1

L2
�̂(µ, jL). (24)

The 1/L2 factor has been included so that equation (23) admits a consistent continuous limit.
From equation (22), this means that λj must be replaced by a continuous function λ(x).
Accordingly, φ̂(µ, x) and �̂(µ, x) satisfy the following equation

∂2φ̂

∂x2
(µ, x) = 2�̂(µ, x) (25)

which may be rewritten as

µλ′(x)2 − λ′′(x) = 2h2(µ)

µh1(µ)
. (26)

As the rhs of this last equation does not depend on x, the only possibility is that λ(x) is linear
in x, so that the lhs is also a constant. As a result, it turns out that there is no factorized solution
that would be symmetric in x with respect to x = 1/2. This suggests that the present model,
with q = 1/2 and symmetric injection rates JL(µ) = JR(µ), does not admit a factorized
steady state, at least in the continuous limit considered here. The above calculation, with λ(x)

linear in x, rather corresponds to a cascade process, where energy is injected on one boundary
only, in a way essentially similar to the fully biased case [20].

A simple physical application

Coming back to the value q = 1 (fully biased model), one can try to use an inhomogeneous
version of the model (i.e., with site-dependent rates) in order to describe schematically a
turbulent cascade—note that only a homogeneous case was studied in [20]. To this aim,
we assume that the lattice sites n may be thought of as successive wavenumbers kn = nk1,
and that energy is injected on site n = 1 (corresponding to the largest wavelength) with a
rate JL(µ) = J0 e−βµ, whereas there is no energy transfer starting from site n = N , that is
JR(µ) = 0 and φN(µ|ρ) = 0. Note that the energy flux entering the system, which in steady
state equals the total rate of energy dissipation, is given by ε = J0/β

2. To proceed further,
the properties of the transition rates have to be specified. For simplicity, we assume fn(ρ) to
take an exponential form, namely fn(ρ) = e−αnρ . A characteristic feature of the turbulence
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phenomena is that the energy dissipation rate �n on site n is of the form �n = νk2
n〈ρn〉, where

ν is a viscosity. We thus compute �n in the present model, yielding

�n = 1

Zn

∫ ∞

0
dρ fn(ρ)

∫ ρ

0
dµµ�n(µ|ρ) =

∫ ∞

0
dµµ�̃n(µ) (27)

with Zn ≡ ∫ ∞
0 dρ fn(ρ), and where the last equality is obtained by permuting the integrals

and using the form (3). A second constraint arises from equations (17) to (19) encoding the
factorization condition for the probability distribution, which reads

JL(µ) =
N∑

n=1

�̃n(µ). (28)

A simple form for �̃n(µ|ρ) that matches the above constraints is

�̃n(µ) = νk2
1n

2

αn

β2 e−βµ (29)

on condition that the following self-consistency equation is satisfied:

ε =
N∑

n=1

νk2
1n

2

αn

. (30)

Then, once �̃n(µ) is known, one can determine φ̃n(µ) through equations (17) to (19).
In the following, we take the infinite N limit and consider the small viscosity regime in

which developed turbulence is usually observed. To determine the energy spectrum, i.e., the
values of αn, we require that the energy flux ε does not depend on the viscosity in the limit
ν → 0. In other words, the αn must be such that the sum in equation (30) is independent of
ν. Assuming that k1 is small and that αn depends smoothly on n, one can replace the above
sum by an integral over the wavenumber k = k1n, introducing the energy density E(k) at
wavenumber k through E(kn) = 1/(k1αn):

∞∑
n=1

νk2
1n

2

αn

=
∞∑

n=1

νk2
nk1E(kn) ≈

∫ ∞

0
dk νk2E(k). (31)

Making the assumption that the energy ρn has the dimension of a velocity square, it is well
known from Kolmogorov’s K41 theory [21] that a dimensionally consistent solution for E(k)

that yields a non-vanishing energy flux for small ν is given by

E(k) = ε
2
3 k− 5

3 g(ηk), η ≡
(

ν3

ε

) 1
4

, (32)

where η is the dissipation scale, and g(x) is a scaling function with a finite limit when x → 0
and such that

∫ ∞
0 dx x1/3g(x) = 1. So our model allows one to construct a stochastic model for

turbulence obeying the K41 phenomenology. Its main drawback is that due to the factorization
condition, the energy spectrum must be somehow included by hand in the stochastic rules,
whereas one may rather wish this spectrum to arise as a solution of the model, by including in
the microscopic rules only some basic physical principles. In this respect, it may be of great
interest to be able to go beyond the factorized steady-state distribution, and one might try to
solve this model with a more general matrix product ansatz.
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Conclusion

In the present note, we have introduced a class of exactly solvable stochastic models, which
include both transport and dissipation phenomena. The factorization condition for the
probability distribution, as well as an explicit solution for the latter, has been derived. Some
specific models within the class may be used to illustrate the appearance of (generalized)
Gumbel distributions in complex systems [20], or to model, in a schematic way, the cascade
phenomenon in turbulent flows. More generally, one might hope that this class of models
could help to understand some fundamental issues concerning the statistical behaviour of
dissipative systems with a large number of degrees of freedom.

Acknowledgments

The author is grateful to P Holdsworth and M Clusel for discussions in an early stage of this
work, and to M Droz for a critical reading of the manuscript.

References

[1] Spitzer F 1970 Adv. Math. 5 246
[2] Derrida B, Evans M R, Hakim V and Pasquier V 1993 J. Phys. A: Math. Gen. 26 1493
[3] Sandow S 1994 Phys. Rev. E 50 2660
[4] Liggett T M 1999 Stochastic Models of Interacting Systems: Contact, Voter and Exclusion Processes (Berlin:

Springer)
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